HESS'S LAW 2 - COMBUSTION

Hess's Law: The enthalpy change for a reaction is independent of the route taken

- e.g. the enthalpy change to go from A \rightarrow B direct is the same as going from A \rightarrow C \rightarrow B
- This method is for questions involving enthalpies of combustion (some people called these "type 2 questions").

Best method for most students (uses a cycle)

- Questions that involve enthalpies of combustion can usually be done using the cycle shown below.
- The reaction involved across the top is often an enthalpy of formation (from elements to a compound).
- The sum of the clockwise arrows equals the sum of the anticlockwise arrows.
- Be careful when drawing your cycle to ensure that arrows are going in the right direction and the number of moles is correct.

 If you use a cycle like this, there is no need to worry about getting the number of oxygen molecules in the downward arrows.

Simpler method if you are struggling

 This is a simpler method that works for most simple questions.

 $\Delta H = [SUM \text{ of } \Delta_c H \text{ reactants}] - [SUM \Delta_c H \text{ products}]$

 Note that this is reactants – products which is the opposite of the equation that uses enthalpies of formation.

Example 1

Calculate the enthalpy of formation of ethanol (C_2H_5OH) given the following enthalpies of combustion. Δ_cH C(s) = -393, $H_2(g) = -286$, $C_2H_5OH(I) = -1371$ kJ/mol

Example 2

Calculate the enthalpy change for this reaction given the following data. $C(s) + 2 H_2(g) \rightarrow CH_4(g)$ $\Delta_c H \quad C(s) = -393, \ H_2(g) = -286, \ CH_4(g) = -890 \ kJ/mol$

1) Calculate the enthalpy of combustion of propane, $C_3H_8(g)$, given the following enthalpy changes.

 $\Delta_c H$: C(s) -393; H₂(g) -286 kJ mol⁻¹, $\Delta_f H$: C₃H₈(l) -103 kJ mol⁻¹

2) Calculate the enthalpy change for the following reaction using the enthalpies of combustion given.

 $C(graphite) \rightarrow C(diamond)$

 $\Delta_c H$: C(graphite) -393; C(diamond) -395 kJ mol⁻¹

3) Calculate the enthalpy change during the fermentation of glucose using the enthalpies of combustion given.

$$C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(I) + 2 CO_2(g)$$

 $\Delta_c H \ : \ C_6 H_{12} O_6(s) \ -2820; \ C_2 H_5 OH(I) \ -1368 \ kJ \ mol^{-1}$

4) Calculate the enthalpy of formation of pentane, C₅H₁₂(I), given the following enthalpies of combustion.

 $\Delta_c H$: $H_2(g)$ -286; C(s) -393; $C_5 H_{12}(I)$ -3509 kJ mol⁻¹

5) Calculate the enthalpy of combustion of propanone, CH₃COCH₃(I), given the information below.

 $\Delta_{c}H$: $H_{2}(g)$ -286; C(s) -393 $\Delta_{f}H$: $CH_{3}COCH_{3}(I)$ -217 kJ mol⁻¹

6) Calculate the enthalpy of combustion of CS₂(I) given the following enthalpy changes.

 $\Delta_{c}H$: C(s) -393; S(s) -297 kJ mol⁻¹, $\Delta_{f}H$: CS₂(l) +88 kJ mol⁻¹

7) Calculate the standard enthalpy change for the following reaction using the enthalpy changes given.

$$SO_2(g) + 2 H_2S(g) \rightarrow 3 S(s) + 2 H_2O(l)$$

 $\Delta_{c}H$: S(s) -297 kJmol⁻¹ $\Delta_{f}H$: H₂O(l) -286; H₂S(g) -20 kJ mol⁻¹