Using mass spectroscopy to find the M_r of compounds

- The first species formed is called the molecular ion, [M]^{+*} (note that this is a radical and has a +ve charge).
- The signal for [M]^{+*} gives the M_r of the compound this is the peak with the greatest m/z value.
- Note common isotopes [Br: ⁷⁹Br:⁸¹Br = 1:1; Cl: ³⁵Cl:³⁷C; = 3:1]

Using mass spectroscopy to find the molecular formula of compounds

- High resolution mass spectrometers measure the m/z values to enough accuracy to find the molecular formula.
- If the M_r of a compound is measured to several decimal places (based on the most common isotopes), it gives a unique molecular formula. For example, the only combination of atoms that has an M_r of 60.0575 is C₃H₈O. By contrast, there are many possible molecular formulae for an M_r of 60 (e.g. C₂H₄O₂, CH₄N₂O and C₃H₈O). With low resolution mass spectrometry, a measured M_r of 60 does not give the molecular formula, but a measured M_r of 60.0575 with high resolution mass spectrometry tells us that the molecular formula is C₃H₈O.

Low resolution M _r	High resolution M _r	Molecular formula	Possible molecules		
60	60.0211	$C_2H_4O_2$	CH₃COOH	HCOOCH ₃	
60	60.0575	C ₃ H ₈ O	CH ₃ CH ₂ CH ₂ OH	CH ₃ CH(OH)CH ₃	$CH_3OCH_2CH_3$
60	60.0324	CH ₄ N ₂ O	H ₂ NCONH ₂ ,		

• However, there is often more than one compound with the same molecular formula. This means that while high resolution mass spectrometry gives the molecular formula, it may not identify the compound. For example, if the M_r is found to be 60.0575 and so the molecular formula is C_3H_8O , it does not tell us whether the compound is propan-1-ol, propan-2-ol or methyoxyethane.

Accurate masses of atoms:

н =	1.00	C = 12.0000	O = 15.9949	N = 14.0031	³⁵ Cl = 34.9689	³⁷ Cl = 36.9659			
1)		A compound is found to have an accurate relative formula mass of 46.0417. It is thought to be either CH_3CH_2OH or $H_2NCH_2NH_2$. Calculate the M_r of each compound to 4 decimal places to work out which one it is.							
		CH ₃ CH ₂ OH							
		H ₂ NCH ₂ NH ₂							
		Molecular formula =							
2)		Analysis of an organic composition showed it to be 102.0678.	ound showed that its	s relative formula m	ass is 102. High re	esolution mass spectroscopy			
	a)	Which of the following three molecular formulas could the compound have? Calculate the M_r of each compound to 4 decimal places to do this.							
		C ₅ H ₁₄ N ₂							
		C ₅ H ₁₀ O ₂							
		C ₃ H ₆ N ₂ O ₂							
		Molecular formula =							
	b)								
3)		Calculate the accurate mass of	of the two molecular	ion peaks in the hig	gh resolution mass s	pectrum of chloroethane.			
		Peak 1							
		Peak 2							
4)		How could high resolution mass spectroscopy be used to distinguish propane and ethenol?							