1) A compound is found to have an accurate relative formula mass of 46.0417. It is thought to be either CH₃CH₂OH or H₂NCH₂NH₂. Calculate the M_r of each compound to 4 decimal places to work out which one it is.

HIGH RESOLUTION MASS SPECTROMETRY

CH₃CH₂OH **46.0417** H₂NCH₂NH₂ **46.0530** Molecular formula = C_2H_6O

- 2) Analysis of an organic compound showed that its relative formula mass is 102. High resolution mass spectroscopy showed it to be 102.0678.
 - a) Which of the following three molecular formulas could the compound have? Calculate the M_r of each compound to 4 decimal places to do this.

C₅H₁₄N₂ **102.1154** C₅H₁₀O₂ **102.0678** C₃H₆N₂O₂ **102.0428** Molecular formula = $C_5H_{10}O_2$

b) Draw and name two molecules that this could be.

CH₃-CH₂-CH₂-CH₂-COOH pentanoic acid CH₃-CH(CH₃)-CH₂-COOH 3-methylbutanoic acid

3) Calculate the accurate mass of the two molecular ion peaks in the high resolution mass spectrum of chloroethane.

Peak 1 64.0079 Peak 2 66.0049

4) How could high resolution mass spectroscopy be used to distinguish propane and ethenol?

 M_r of propane CH₃-CH₂-CH₂ = 44.0624 M_r of ethenol CH₂=CH-OH = 44.0261 Measure the M_r to 4 dp and see if it is 44.0624 or 44.0261