
7. Mass spectra and IR

7A Mass spectrometry

Measuring the M_r of an organic molecule

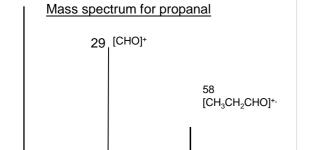
If a molecule is put through a mass spectrometer it will often break up and give a series of peaks caused by the fragments. The peak with the largest m/z, however, will be due to the complete molecule and will be equal to the M_r of the molecule. This peak is called the parent ion or **molecular ion**

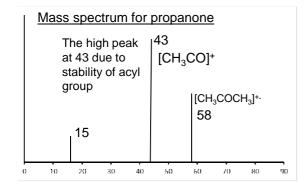
Spectra for C₄H₁₀

Fragmentation

When organic molecules are passed through a mass spectrometer, it detects both the whole molecule and fragments of the molecule.

Molecular ion formed: $M \rightarrow [M]^{+} + e^{-}$


The molecule loses an electron and becomes both an ion and a free radical


Several peaks in the mass spectrum occur due to fragmentation. The Molecular ion fragments due to covalent bonds breaking: $[M]^{+} \rightarrow X^{+} + Y^{-}$

This process produces an ion and a free radical. The ion is responsible for the peak

Relatively stable ions such as carbocations R^+ such as $CH_3CH_2^+$ and acylium ions $[R-C=O]^+$ are common. The more stable the ion, the greater the peak intensity.

The peak with the highest mass/charge ratio will be normally due to the original molecule that hasn't fragmented (called the molecular ion). As the charge of the ion is +1 the mass/ charge ratio is equal to Mr.

Equation for formation molecular ion

$$CH_3CH_2CHO \rightarrow [CH_3CH_2CHO]^{+} + e^- m/z 58$$

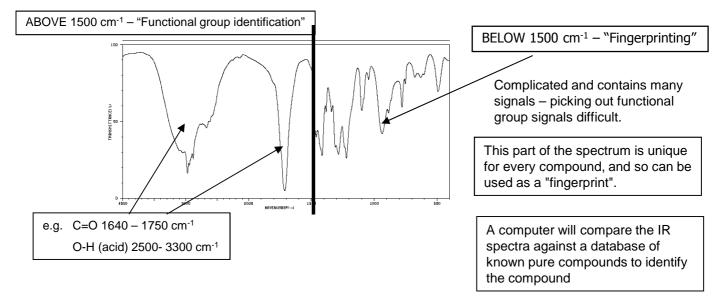
Equations for formation of fragment ions from molecular ions

$$[CH_3CH_2CHO]^+ \rightarrow [CHO]^+ + \cdot CH_2CH_3$$
 m/z 29
 $[CH_3CH_2CHO]^+ \rightarrow [CH_3CH_2]^+ + \cdot CHO$ m/z 29

Equation for formation molecular ion

$$\text{CH}_3\text{COCH}_3 \rightarrow [\text{CH}_3\text{COCH}_3]^{+.} + \text{e}^- \quad \text{m/z} 58$$

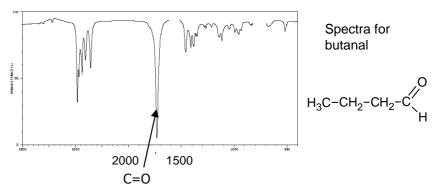
Equations for formation of fragment ions from molecular ions

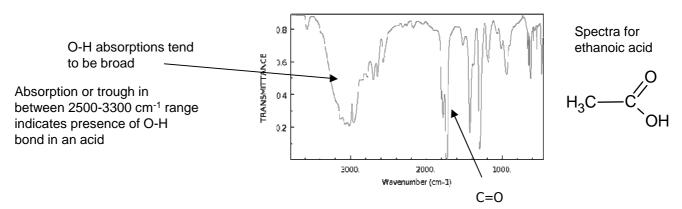

$$[CH_3COCH_3]^{+} \rightarrow [CH_3CO]^+ + \cdot CH_3 \text{ m/z } 43$$

It is not possible for propanone to fragment to give a peak at 29 so the fragmentation patterns can distinguish between the structural isomers of propanone and propanal

7B Infrared spectroscopy

Certain bonds in a molecule absorb infra-red radiation at characteristic frequencies causing the covalent bonds to vibrate


Complicated spectra can be obtained than provide information about the types of bonds present in a molecule


Use an IR absorption table provided in exam to deduce presence <u>or</u> absence of particular bonds or functional groups

Bond	Wavenumber
C-O	1000-1300
C=O	1640-1750
C-H	2850 -3100
O-H Carboxylic acids	2500-3300 Very broad
N-H	3200-3500
O-H Acohols, phenols	3200- 3550 broad

Use spectra to identify particular functional groups e.g. an alcohol from an absorption peak of the O–H bond, or C=O stretching absorption in aldehydes and ketones

Absorption or trough in between 1640-1750 cm⁻¹ range indicates presence of C=O bond

Absorption or trough in between 1640-1750 cm⁻¹ range indicates presence of C=O bond

Molecules which change their polarity as they vibrate can absorb infrared radiation. E.g. C-H, C=O, O-H

Molecules such as H_2 , O_2 and N_2 cannot change their polarity as they vibrate so can absorb infrared radiation and don't register on an infra red spectrum

The absorption of infra-red radiation by bonds in this type of spectroscopy is the same absorption that bonds in CO₂, methane and water vapour in the atmosphere do that cause them to be greenhouse gases.

 H_2O , CO_2 , CH_4 and NO molecules absorb IR radiation and are greenhouse gases, whilst O_2 and N_2 are not.