partners in excellence PIXLClub The PIXLClub The PIXLClub Get x ready tork BTEC! guide to help you get ready for L3 BTEC App ne PIXL Club The PIXL Club The PIXL Club The ${f Human}$ ${f Biology}$;XL Club The PIXL Club The PIXL Club The Club The Adapted from the A level transition pack By A Fleck 2020 lub The PiXL Club This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club. It may not be copied, sold nor transferred to a third party or used by the school after membership ceases. Until such time it may be freely used within the member school. All opinions and contributions are those of the authors. The contents of this resource are not connected with nor endorsed by any other company, organisation or institution. www.pixl.org.uk The PiXL Club Ltd, Company number 07321607 # So you are considering BTEC Applied Human Biology? This pack contains a programme of activities and resources to prepare you to start BTEC Applied Human Biology in September. It is aimed to be used after you complete your GCSE throughout the remainder of the Summer term and over the Summer Holidays to ensure you are ready to start your course in September. https://www.distance-education-academy.com/wp-content/uploads/2013/06/biology-a-level-course.jpg ## **Book Recommendations** Kick back this summer with a good read. The books below are all popular science books and great for extending your understanding of Biology ### Junk DNA Our DNA is so much more complex than you probably realize, this book will really deepen your understanding of all the work you will do on Genetics. Available at amazon.co.uk Studying Geography as well? Hen's teeth and horses toes Stephen Jay Gould is a great Evolution writer and this book discusses lots of fascinating stories about Geology and evolution. Available at amazon.co.uk #### The Red Queen Its all about sex. Or sexual selection at least. This book will really help your understanding of evolution and particularly the fascinating role of sex in evolution. Available at amazon.co.uk ## A Short History of Nearly Everything A whistle-stop tour through many aspects of history from the Big Bang to now. This is a really accessible read that will re-familiarise you with common concepts and introduce you to some of the more colourful characters from the history of science! Available at amazon.co.uk # An easy read.. Frankenstein's cat Discover how glow in the dark fish are made and more great Biotechnology breakthroughs. Available at amazon.co.uk # **Movie Recommendations** Everyone loves a good story and everyone loves some great science. Here are some of the picks of the best films based on real life scientists and discoveries. You wont find Jurassic Park on this list, we've looked back over the last 50 years to give you our top 5 films you might not have seen before. Great watching for a rainy day. ## Inherit The Wind (1960) Great if you can find it. Based on a real life trial of a teacher accused of the crime of teaching Darwinian evolution in school in America. Does the debate rumble on today? SARANDÔÑ ORENZ ## Lorenzo's Oil (1992) Based on a true story. A young child suffers from an autoimmune disease. The parents research and challenge doctors to develop a new cure for his disease. ## Andromeda Strain (1971) Science fiction by the great thriller writer Michael Cricthon (he of Jurassic Park fame). Humans begin dying when an alien microbe arrives on Earth. NDROMEDA There are some great TV series and box sets available too, you might want to check out: Blue Planet, Planet Earth, The Ascent of Man, Catastrophe, Frozen Planet, Life Story, The Hunt and Monsoon. # **Movie Recommendations** If you have 30 minutes to spare, here are some great presentations (and free!) from world leading scientists and researchers on a variety of topics. They provide some interesting answers and ask some thought-provoking questions. Use the link or scan the QR code to view: # A New Superweapon in the Fight Against Cancer #### Available at: http://www.ted.com/talks/paula hammon d a new superweapon in the fight agai nst cancer?language=en Cancer is a very clever, adaptable disease. To defeat it, says medical researcher and educator Paula Hammond, we need a new and powerful mode of attack. # Why Bees are Disappearing Available at: http://www.ted.com/talks/marla_spivak why_bees are_disappearing?language=en Honeybees have thrived for 50 million years, each colony 40 to 50,000 individuals coordinated in amazing harmony. So why, seven years ago, did colonies start dying en-masse? #### Available at: http://www.ted.com/talks/ben_goldacre_what doctors don t know about the dr ugs they prescribe?language=en When a new drug gets tested, the results of the trials should be published for the rest of the medical world — except much of the time, negative or inconclusive findings go unreported, leaving doctors and researchers in the dark. #### **Growing New Organs** Available at: http://www.ted.com/talks/anthony atala growing organs engineering tissue?langu age=en Anthony Atalla's state-of-the-art lab grows human organs — from muscles to blood vessels to bladders, and more. # **Research activities** Research, reading and note making are essential skills for BTEC L3 Applied Human Biology study. For the following task you are going to produce 'Cornell Notes' to summarise your reading. 1. Divide your page into three sections like this 2. Write the name, date and topic at the top of the page 3. Use the large box to make notes. Leave a space between separate idea. Abbreviate where possible. 4. Review and identify the key points in the left hand box 5. Write a summary of the main ideas in the bottom space Images taken from http://coe.jmu.edu/learningtoolbox/cornellnotes.html # **Research activities** The Big Picture is an excellent publication from the Wellcome Trust. Along with the magazine, the company produces posters, videos and other resources aimed at students studying for GCSEs, BTEC and A level. For each of the following topics, you are going to use the resources to produce one page of Cornell style Use the links of scan the QR code to take you to the resources. # **BigPicture** Topic 1: The Cell Available at: http://bigpictureeducation.com/cell The cell is the building block of life. Each of us starts from a single cell, a zygote, and grows into a complex organism made of trillions of cells. In this issue, we explore what we know – and what we don't yet know - about the cells that are the basis of us all and how they reproduce, grow, move, communicate and die. Topic 2: The Immune System Available at: http://bigpictureeducation.com/immune The immune system is what keeps us healthy in spite of the many organisms and substances that can do us harm. In this issue, explore how our bodies are designed to prevent potentially harmful objects from getting inside, and what happens when bacteria, viruses, fungi or other foreign organisms or substances breach these barriers. Topic 3: Exercise, Energy and Movement Available at: http://bigpictureeducation.com/exercise-energyand-movement All living things move. Whether it's a plant growing towards the sun, bacteria swimming away from a toxin or you walking home, anything alive must move to survive. For humans though, movement is more than just survival – we move for fun, to compete and to be healthy. In this issue we look at the biological systems that keep us moving and consider some of the psychological, social and ethical aspects of exercise and sport. # **Pre-Knowledge Topics** #### **Cells** The cell is a unifying concept in biology, you will come across it many times during your two years of BTEC study. Prokaryotic and eukaryotic cells can be distinguished on the basis of their structure and ultrastructure. In complex multicellular organisms cells are organised into tissues, tissues into organs and organs into systems. During the cell cycle genetic information is copied and passed to daughter cells. Daughter cells formed during mitosis have identical copies of genes while cells formed during meiosis are not genetically identical Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/cells-and-organelleshttp://www.bbc.co.uk/education/guides/zvjycdm/revision #### And take a look at these videos: https://www.youtube.com/watch?v=gcTuQpuJyD8 https://www.youtube.com/watch?v=L0k-enzoeOM https://www.youtube.com/watch?v=qCLmR9-YY70 #### Task: Produce a one page revision guide to share with your class in September summarising one of the following topics: Cells and Cell Ultrastructure, Prokaryotes and Eukaryotes, or Mitosis and Meiosis. Whichever topic you choose, your revision guide should include: Key words and definitions Clearly labelled diagrams Short explanations of key ideas or processes. #### **Biological Molecules** Biological molecules are often polymers and are based on a small number of chemical elements. In living organisms carbohydrates, proteins, lipids, inorganic ions and water all have important roles and functions related to their properties. DNA determines the structure of proteins, including enzymes. Enzymes catalyse the reactions that determine structures and functions from cellular to whole-organism level. Enzymes are proteins with a mechanism of action and other properties determined by their tertiary structure. ATP provides the immediate source of energy for biological processes. Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/biological-molecules-and-enzymes http://www.bbc.co.uk/education/guides/zb739j6/revision #### And take a look at these videos: https://www.youtube.com/watch?v=H8WJ2KENIK0 http://ed.ted.com/lessons/activation-energy-kickstarting-chemical-reactions-vance-kite #### Task: Krabbe disease occurs when a person doesn't have a certain enzyme in their body. The disease effects the nervous system. Write a letter to a GP or a sufferer to explain what an enzyme is. Your poster should: Describe the structure of an enzyme Explain what enzymes do inside the body #### DNA and the Genetic Code In living organisms nucleic acids (DNA and RNA have important roles and functions related to their properties. The sequence of bases in the DNA molecule determines the structure of proteins, including enzymes. The double helix and its four bases store the information that is passed from generation to generation. The sequence of the base pairs adenine, thymine, cytosine and guanine tell ribosomes in the cytoplasm how to construct amino acids into polypeptides and produce every characteristic we see. DNA can mutate leading to diseases including cancer and sometimes anomalies in the genetic code are passed from parents to babies in disease such as cystic fibrosis, or can be developed in unborn foetuses such as Downs Syndrome. Read the information on these websites (you could make more Cornell notes if you wish): http://www.bbc.co.uk/education/guides/z36mmp3/revision http://www.s-cool.co.uk/a-level/biology/dna-and-genetic-code #### And take a look at these videos: http://ed.ted.com/lessons/the-twisting-tale-of-dna-judith-hauck http://ed.ted.com/lessons/where-do-genes-come-from-carl-zimmer #### Task: Produce a wall display to put up in your classroom in September. You might make a poster or do this using PowerPoint or similar Your display should use images, keywords and simple explanations to: Define gene, chromosome, DNA and base pair Describe the structure and function of DNA and RNA Explain how DNA is copied in the body Outline some of the problems that occur with DNA replication and what the consequences of this might be. #### **Exchange and Transport** Organisms need to exchange substances selectively with their environment and this takes place at exchange surfaces. Factors such as size or metabolic rate affect the requirements of organisms and this gives rise to adaptations such as specialised exchange surfaces and mass transport systems. Substances are exchanged by passive or active transport across exchange surfaces. The structure of the plasma membrane enables control of the passage of substances into and out of cells Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/gas-exchange http://www.s-cool.co.uk/a-level/biology/nutrition-and-digestion/revise-it/human-digestive-system #### And take a look at these videos: http://ed.ted.com/lessons/insights-into-cell-membranes-via-dish-detergent-ethan-perlstein http://ed.ted.com/lessons/what-do-the-lungs-do-emma-bryce #### Task: Create a poster or display to go in your classroom in September. Your poster should either: compare exchange surfaces in mammals and fish or compare exchange surfaces in the lungs and the intestines. You could use a Venn diagram to do this. Your poster should: Describe diffusion, osmosis and active transport Explain why oxygen and glucose need to be absorbed and waste products removed Compare and contrast your chosen focus. #### **Control Systems** Homeostasis is the maintenance of a constant internal environment. Negative feedback helps maintain an optimal internal state in the context of a dynamic equilibrium. Positive feedback also occurs. Stimuli, both internal and external, are detected leading to responses. The genome is regulated by a number of factors. Coordination may be chemical or electrical in nature Read the information on these websites (you could make more Cornell notes if you wish): http://www.s-cool.co.uk/a-level/biology/homeostasis http://www.bbc.co.uk/education/topics/z8kxpv4 And take a look at these videos: https://www.youtube.com/watch?v=x4PPZCLnVkAhttps://www.youtube.com/watch?v=x4PPZCLnVkA #### Task: Produce a poster to display in your classroom in September summarising one of the following topics: Temperature Control, Water and the Kidneys, Glucose, or The Liver. Whichever topic you choose, your poster or display should include: Key words and definitions Clearly labelled diagrams Short explanations of key ideas or processes. #### **Energy for Biological Processes** In cellular respiration, glycolysis takes place in the cytoplasm and the remaining steps in the mitochondria. ATP synthesis is associated with the electron transfer chain in the membranes of mitochondria and chloroplasts in photosynthesis energy is transferred to ATP in the light-dependent stage and the ATP is utilised during synthesis in the light-independent stage. Read the information on these websites (you could make more Cornell notes if you wish): http://www.bbc.co.uk/education/guides/zcxrd2p/revision http://www.s-cool.co.uk/a-level/biology/respiration And take a look at these videos: https://www.youtube.com/watch?v=00jbG cfGuQ https://www.youtube.com/watch?v=2f7YwCtHcgk #### Task: Produce an A3 annotated information poster that illustrates the process of cellular respiration and summarises the key points. Your poster should include: Both text and images Be visually stimulating Key words and definitions Clearly labelled diagrams Short explanations of key ideas or processes. # **Ideas for Day Trips** If you are on holiday in the UK, or on a staycation at home, why not plan a day trip to one of these : History - Oxford ## Science on Social Media Science communication is essential in the modern world and all the big scientific companies, researchers and institutions have their own social media accounts. Here are some of our top tips to keep up to date with developing news or interesting stories: #### Follow on Twitter: Commander Chris Hadfield – former resident aboard the International Space Station @cmdrhadfield Tiktaalik roseae – a 375 million year old fossil fish with its own Twitter account! @tiktaalikroseae NASA's Voyager 2 – a satellite launched nearly 40 years ago that is now travelling beyond our Solar System @NSFVoyager2 Neil dGrasse Tyson – Director of the Hayden Planetarium in New York @neiltyson Sci Curious – feed from writer and Bethany Brookshire tweeting about good, bad and weird neuroscience @scicurious The SETI Institute – The Search for Extra Terrestrial Intelligence, be the first to know what they find! @setiinstitute Carl Zimmer – Science writer Carl blogs about the life sciences @carlzimmer Phil Plait – tweets about astronomy and bad science @badastronomer Virginia Hughes – science journalist and blogger for National Geographic, keep up to date with neuroscience, genetics and behaviour @virginiahughes Maryn McKenna – science journalist who writes about antibiotic resistance @marynmck #### Find on Facebook: Nature - the profile page for nature.com for news, features, research and events from Nature Publishing Group Marin Conservation Institute – publishes the latest science to identify important marine ecosystems around the world. National Geographic - since 1888, National Geographic has travelled the Earth, sharing its amazing stories in pictures and words. Science News Magazine - Science covers important and emerging research in all fields of science. BBC Science News - The latest BBC Science and Environment News: breaking news, analysis and debate on science and nature around the world. ## Science websites These websites all offer an amazing collection of resources that you should use again and again through out your course. Probably the best website on Biology.... Learn Genetics from Utah University has so much that is pitched at an appropriate level for you and has lots of interactive resources to explore, everything from why some people can taste bitter berries to how we clone mice or make glow in the dark jelly fish. http://learn.genetics.utah.edu/ In the summer you will most likely start to learn about Biodiversity and Evolution. Many Zoos have great websites, especially London Zoo. Read about some of the case studies on conservation, such as the Giant Pangolin, the only mammal with scales. https://www.zsl.org/conservation At GCSE you learnt how genetic diseases are inherited. In this virtual fly lab you get to breed fruit flies to investigate how different features are passed on. http://sciencecourseware.org/vcise/dro sophila/ DNA from the beginning is full of interactive animations that tell the story of DNA from its discovery through to advanced year 13 concepts. One to book mark! http://www.dnaftb.org/ Ok, so not a website, but a video you definitely want to watch. One of the first topics you will learn about is the amazing structure of the cell. This BBC film shows the fascinating workings of a cell... a touch more detailed than the "fried egg" model you might have seen. http://www.dailymotion.com/video/xz h0kb_the-hidden-life-of-thecell_shortfilms If this link expires – google "BBC hidden life of the cell" # Science: Things to do! Day 4 of the holidays and boredom has set in? There are loads of citizen science projects you can take part in either from the comfort of your bedroom, out and about, or when on holiday. Wikipedia does a comprehensive list of all the current projects taking place. Google 'citizen science project' Want to stand above the rest when it comes to UCAS? Now is the time to MOOCs are online courses run by nearly all Universities. They are short FREE courses that you take part in. They are usually quite specialist, but aimed at the public, not the genius! There are lots of websites that help you find a course, such as edX and Future learn. You can take part in any course, but there are usually start and finish dates. They mostly involve taking part in web chats, watching videos and interactives. Completing a MOOC will look great your Personal statement and they are dead easy to take part in!