$$
\begin{aligned}
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad y=a^{x} \\
& \left.y=2^{x+1} 1 .\right]^{3} \\
& \left(y=-b x_{2}-a\right)^{2}+\cdots+\left(y_{n}-b_{n}-a\right)^{2} \\
& A^{B}[1,2]^{A} C_{1}^{1}=D \\
& c^{2}=1+\alpha=y
\end{aligned}
$$

Contents

Lesson Page

1. The Language of Algebra 3
2. Substitution 7
3. Simplifying Expressions 11
4. Expanding Brackets 15
5. Expanding two or more brackets 19
6. Factorising Expressions 1 23
7. Factorising Expressions 2 27
8. Rearranging Formula 31
9. Generating Sequences 35
10. Finding the $\mathrm{n}^{\text {th }}$ term of sequences 39
11. Quadratic Sequences 43

The Language of Algebra

Learning outcomes

1. Use and interpret algebraic notation
2. Use and interpret algebraic notation in context
3. Recognise and understand the concept and vocabulary of expressions, equations, formulae and identities

Starter activity

Find the words in the grid
brackets
equation
expression
formula
identity
simplify term
variable

S	B	Y	E	R	U	C	A	O	C	N	Z	N	Y	F
G	T	G	J	R	N	X	V	F	E	Q	K	T	C	O
T	M	E	J	T	O	E	I	A	R	P	I	R	W	R
G	N	G	K	H	I	Q	S	U	R	T	K	L	D	M
C	A	H	W	C	T	L	P	M	N	I	S	Y	G	U
H	S	K	B	S	A	B	L	E	R	R	A	T	L	L
C	Y	G	W	F	U	R	D	L	B	E	T	B	Q	A
D	G	P	C	C	Q	I	B	S	N	S	T	E	L	Y
T	L	W	L	Q	E	S	I	M	P	L	I	F	Y	E
R	E	B	M	U	N	Y	N	I	S	L	U	S	Y	Q
Y	U	F	N	M	X	U	E	N	E	B	T	I	K	O
F	F	D	P	S	D	E	D	T	I	H	E	H	C	W
X	V	G	G	Q	I	A	T	M	M	M	A	I	M	Z
Y	N	O	I	S	S	E	R	P	X	E	J	F	L	Z
O	F	F	Q	U	R	Y	Y	W	A	Y	D	B	I	F

The Language of Algebra

Activity 1

Write an expression for each description

1. 6 minus h
2. 4 added to c
3. g minus 5
4. d less than c
5. y multiplied by 5
6. s multiplied by t
7. f multiplied by f
8. 4 divided by r
9. t divided by v
10. s multiplied by 5 and add 2
11. t minus 7 then multiplied by 3

Activity 2

Answer the questions below

1. In an examination Joanne got x marks
a) Alan got 6 more marks than Joanne. Write an expression for the number of marks Alan got
b) Brian got 5 times as many marks as Joanne. Write an expression for the number of marks Brian got
c) Charlie got half the marks that Joanne got.

Write an expression for the number of marks Charlie got

The Language of Algebra

Activity 3

For each of the following state whether they are an expression, equation, formula or identity

1. Area $=l x w$
2. $3 m+2=5$
3. $2 x \equiv x+x$
4. $7 n-3=11$
5. $2 x+5 y+3$
6. $a^{2}+b^{2}=c^{2}$
7. $5 p \equiv 2 p+3 p$
8. $2 m-8=6$
9. $4 t+6$
10. $2(m+3)=16$
11. $6 p+4 \equiv 2(3 p+2)$
12. $2 t+5 d$

The Language of Algebra

Plenary - What have I learnt today?

Substitution

Learning outcomes

1. Evaluate an expression by substituting one or more positive numbers into it
2. Evaluate an expression by substituting one or more positive or negative numbers into it
3. Evaluate complex expressions by substitution
4. Evaluate formulae by substitution

Starter activity

Complete the multiplication grid

Hint
Same signs = positive Opposite signs = negative

X	-2	-6	3	-4
5	e.g. -2×5 -10			
4				
-2				
-5				

Substitution

Activity 1

Using the values evaluate the expressions $\boldsymbol{a}=\mathbf{3} \quad \boldsymbol{b}=\mathbf{5} \quad \boldsymbol{c}=\mathbf{7}$

1. $4 a=$
2. $6 a+7=$
3. $14-2 a=$
$4.7 b=$
4. $6 c+14=$
5. $46-6 c=$
$7.3 a+4 b=$
6. $9 b-4 c=$

Amy is trying to work out the two values of p for which $4 p-p^{3}=3$. Her values are 1 and 2. Are her values correct? You must show your working

Activity 2

Using the values evaluate the expressions $\boldsymbol{a}=\mathbf{- 4} \quad \boldsymbol{b}=\mathbf{- 3} \quad \boldsymbol{c}=-\mathbf{5}$

1. $3 a=$
2. $4 c=$
$3.14-3 a=$
$4.12-3 b=$
3. $6 b-2 a=$
4. $6 c+5 a=$
5. $4-6 c=$
6. $3 a+4 b=$

Amy is trying to work out the two values of p for which $5 p-p^{3}=4$. Her values are 1 and -1. Are her values correct? You must show your working

Substitution

Activity 3

Using the values evaluate the expressions $\boldsymbol{a}=\mathbf{3} \quad \boldsymbol{b}=-\mathbf{5}$

1. $a^{2}+b=$
2. $b^{2}-a=$
$3.3 b^{2}=$
3. $5 a^{2}+b=$
4. $b^{3}=$
5. $3 a^{2}+2 b^{2}=$
6. $\sqrt{3 a-8 b}=$
7. $\sqrt{2 a+3 b^{2}}=$

If $x=4$ place the expressions in ascending order
$12-2 x \quad 4 x+8 \quad x^{2} \quad-5 x \quad x^{0}$
\qquad
\qquad
\qquad

Activity 4

Answer the questions below

1. The formula for the area of a trapezium is $A=\frac{(a+b) h}{2}$.

Calculate the area of a trapezium with the following values:
a) $\mathrm{a}=3$
b) $\mathrm{a}=3.7$
$\mathrm{b}=7$
$\mathrm{b}=6.3$
$\mathrm{h}=4$
$\mathrm{h}=7$
2. A taxi firm charges $£ 4$ fixed charge plus $£ 5$ per kilometre.
a) Write a formula for the cost of a journey, C , of k kilometres.
b) Use your formula to work out the cost of travelling 7 km .

GCSE MATHS

Substitution

Plenary - What have I learnt today?

Simplifying Expressions

Learning outcomes

1. Simplify expressions by collecting like terms
2. Simplify expressions with multiplication using index laws
3. Simplify algebraic fractions using index laws

Starter activity

1. Write the expressions as a single power
a) $2^{3} x 2^{4}$
b) $6^{2} \times 6^{3}$
c) 8×8^{4}
2. Write the expressions as a single power
a) $2^{6} \div 2^{4}$
b) $7^{5} \div 7^{4}$
c) $6^{4} \div 6$
3. Evaluate
a) $\frac{3^{4} \times 3^{2}}{3^{3}}$
b) $\frac{4^{3} \times 4^{5}}{4^{6}}$
c) $\frac{3^{2} \times 3^{3} \times 3^{5}}{3^{6}}$

Simplifying Expressions

Activity 1

Simplify the expressions by collecting like terms

1. $3 a+5 b+2 a+6 b=$
2. $4 y+y+2 z+6 z=$
3. $5 \mathrm{~d}+7-2 \mathrm{~d}+11=$
4. $7 \mathrm{t}-4 \mathrm{t}+6+2=$
5. $5 t+3 s-2 t-6 s=$
6. $7 a-6 b+2 a-4 b=$

Write an expression for the perimeter of the shapes. Simplify the expressions by collecting like terms

Activity 2

Simplify the expressions

1. $a x d=$
2. $8 \mathrm{xe=}=$
3. $4 \mathrm{c} \times 2=$
4. $8 \mathrm{~h} \times 3=$
5. $5 \mathrm{f} \times \mathrm{h}=$
6. $s \times 6 t=$
7. $4 \mathrm{~d} \times 6 \mathrm{e}=$
8. $3 a \times 5 a=$

Simplifying Expressions

Activity 2

9) $y x y^{2}=$
10) $3 \mathrm{~m} \mathrm{x} \mathrm{m}^{2}=$
11) $t^{2} x t^{2}=$
12) $3 a^{4} \times 2 a^{2}=$

Write an expression for the area of the shapes

Activity 3

Simplify the expressions

1. $\frac{14 b}{2 b}=$
2. $\frac{3 d^{2}}{d}=$
3. $\frac{36 c^{2}}{9 c}=$
4. $\frac{18 b^{3}}{6 b}=$
5. $\frac{24 y^{4}}{8 y^{2}}=$
6. $\frac{28 a b^{2}}{21 b}=$
7. $\frac{12 d^{2} e^{5}}{8 d e^{3}}=$
8. $\frac{36 a^{2} b c^{4}}{27 a c^{3}}=$

GCSE MATHS

Simplifying Expressions

Activity 3

Which of the expressions are equivalent?

$$
9 x^{2} \times x^{3} \quad 3 x \times 3 x^{3} \quad \frac{27 x^{7}}{3 x^{2}} \quad \frac{18 x^{6}}{3 x}
$$

Plenary - What have I learnt today?

Expanding Brackets

Learning outcomes

1. Simplify an algebraic expression by multiplying a single term over a bracket
2. Simplify an algebraic expression by multiplying a single term over a bracket and collecting like terms
3. Apply expanding brackets and simplifying expressions

Starter activity

Fill in the grid by multiplying the numbers in the rows and columns together

x	2	-1	-4	-3	
$\mathbf{3}$	6				
$\mathbf{5}$					-25
-2			8		
-8					
					30

Expanding Brackets

Activity 1

Expand the brackets

1. $2(p+2)=$
2. $5(s+4)=$
3. $6(g-2)=$
4. $7(\mathrm{~d}-4)=$
5. $4(3 t+2)=$
6. $2(4 s+2)=$
7. $4(5 g-4)=$
8. $3(2 \mathrm{~d}-1)=$
9. $r(4 r+3)=$
10. $s(5 s-2)=$
11. $2 p(3 p+2)=$
12. $3 w(4 w-5)=$

Activity 2

Expand the brackets and simplify

1. $3(v+6)+5(v+7)=$
2. $5(g-2)+2(g+3)=$
3. $3(a-6)+4(a-2)=$
4. $2(\mathrm{~h}-2)-5(\mathrm{~h}+4)=$
5. $3(\mathrm{~d}-2)-8(\mathrm{~d}-3)=$
6. $4 p(3 p+5)-3(p-3)=$

Expanding Brackets

Activity 3

For each shape

a) Write an expression for the total shaded area
b) Expand and simplify the expressions

2. $5 x$

$$
(2 x-2)
$$

4.

Expanding Brackets

Plenary - What have I learnt today?

Expanding two or more brackets

Learning outcomes

1. Expand the product of two binomials
2. Expand the square of a binomial
3. Expand the product of more than two binomials

Starter activity

Expand the following brackets

1. $3(x+2)=$
2. $5(x-4)=$
3. $x(8 x-5)=$
4. $4 x(x+5)=$

Expanding two or more brackets

Activity 1

Expand and simplify

1. $(x+3)(x+4)$
2. $(x+6)(x+9)$
3. $(y+7)(y+3)$
4. $(x+1)(x-2)$
5. $(t-5)(t+4)$
6. $(n+3)(n-3)$
7. $(x-2)(x-3)$
8. $(x-6)(x-1)$
9. $(x-4)(x-7)$

Find the missing terms in the quadratic expressions
1.
2.

Activity 2

Expand and simplify

1. $(x+5)^{2}$
2. $(x+6)^{2}$
3. $(y+3)^{2}$
4. $(x-2)^{2}$
5. $(t-5)^{2}$
6. $(4+x)^{2}$

Expanding two or more brackets

Activity 2

Find the missing terms in the quadratic expressions

1. $(x+$ \qquad .) $)^{2}=x^{2}+$ \qquad $x+4$
2. ($\mathrm{x}-$ \qquad $)^{2}=x^{2}-12 x+$ \qquad

Activity 3

Expand and simplify

1. $(x+4)^{3}$
2. $(x-4)(x-1)(x+2)$
3. $(3 x-1)(x+3)(x-5)$

Expanding two or more brackets

Activity 3

a) Form an expression for the volume of the cuboid
b) Expand and simplify the expression

Factorising Expressions 1

Learning outcomes

1. Factorise linear expressions
2. Factorise complex expressions including indices
3. Factorise quadratic expressions

Starter activity

Expand the brackets and simplify the expressions

1. a) $2(x+2)=$
b) $6(x-3)=$
c) $5(2 x+1)=$
d) $x(3 x+1)=$
e) $2 x(3 x+5)=$
f) $3 x(6 x-5)=$
2. a) $(x+3)(x+4)=$
b) $(x-5)(x+3)=$
c) $(x-4)(x-5)=$
d) $(2 x+3)(x-4)=$

Factorising Expressions 1

Activity 1

Factorise the expressions
a) $3 x+6=$
b) $2 y-8=$
c) $5 x+20=$
d) $4 x+12 y=$
e) $9 x-3 y=$
f) $x y+3 x=$
g) $5 x^{2}+3 x=$
h) $4 y^{2}-2 y=$
i) $12 a^{2}-8 a b=$

Activity 2

Factorise the expressions
a) $x^{5}+x^{3}-x^{4}=$
b) $7 a^{2}+15 a^{4}=$
c) $24 b^{2} c^{4}-12 c^{2}=$
d) $24 d^{2}-18 d^{6}=$
e) $9 a^{4} b+27 a^{2} b^{4}=$
f) $15 d^{4}-21 c^{2}+18 c d=$

Factorising Expressions 1

Activity 3

Factorise the expressions

1. a) $x^{2}+5 x+6=$
b) $x^{2}+7 x+10=$
c) $x^{2}+8 x+12=$
2. a) $x^{2}-5 x+4=$
b) $x^{2}-15 x+36=$
c) $x^{2}-7 x+10=$
3. a) $x^{2}+5 x-6=$
b) $x^{2}-6 x-7=$
c) $x^{2}-x-72=$

GCSE MATHS

Factorising Expressions 1

Plenary - What have I learnt today?

GCSE MATHS

Factorising Expressions 2

Learning outcomes

1. Factorise quadratic expressions by finding the difference of two squares
2. Factorise quadratic expressions of the form $a x^{2}+b x+c$

Starter activity

Factorise the expressions
a) $x^{2}+7 x+10=$
b) $x^{2}+9 x+14=$
c) $x^{2}-x-6=$
d) $x^{2}-2 x-3=$
e) $x^{2}-5 x+4=$
f) $x^{2}+2 x-8=$

Factorising Expressions 2

Activity 1

Factorise the expressions

1. a) $x^{2}-25=$
b) $x^{2}-81=$
c) $x^{2}-121=$
2. a) $36 x^{2}-16=$
b) $25 x^{2}-1=$
c) $27 x^{2}-12=$

Factorising Expressions 2

Activity 2

Factorise the expressions

1. a) $3 x^{2}+8 x-3=$
b) $2 x^{2}+5 x-3=$
c) $4 x^{2}+4 x-15=$
d) $2 x^{2}+11 x-21=$
e) $5 x^{2}-9 x-2=$
f) $15 x^{2}+2 x-1=$

GCSE MATHS

Factorising Expressions 2

Plenary - What have I learnt today?

Rearranging Formula

Learning outcomes

1. Change the subject of simple formulae
2. Change the subject of more complex formulae
3. Change the subject of formulae where the subject appears twice

Starter activity

Solve the following one and two step equations:

1. $x+4=8$
2. $f^{2}-4=21$
3. $7 p=-49$
4. $2 g-5=6$
5. $c^{2}=64$
6. $p^{3}-7=20$

Rearranging Formula

Activity 1

Change the subject of the formula to the variable in brackets

1. $x-4=2 y(y)$
$2.3-f=\frac{t}{4}(t)$
2. $t=4 r+3 t(r)$
3. $\frac{u}{3}+4=2-y(u)$
4. $3 p-4=y-p(p)$
5. $h^{2}=4 g+5(g)$

Activity 2

Change the subject of the formula to the variable in brackets

1. $\pi^{2}+3=2 y(\pi)$
2. $t-4=\sqrt[3]{\frac{f}{2}}$
3. $v^{2}=u^{2}+2 a x(a)$

Rearranging Formula

Activity 2

4. $(a+3)^{2}=g(a)$
5. $p^{2}+4 p+4=t(p)$
6. $\frac{h^{2}+t}{3}=y(h)$

Activity 3

Make \boldsymbol{x} the subject of the formulae

1. $a(x-b)=c x+d$
2. $a x-b=c x+d$
3. $x=\frac{a x+b}{c}$
4. $\frac{x}{a b}=c x+d$
5. $\frac{a}{x}+b=\frac{c}{x}+d$
6. $\frac{x}{a}+b=c x+d$

GCSE MATHS

Rearranging Formula

Plenary - What have I learnt today?

GCSE MATHS

Generating Sequences

Learning outcomes

1. Generate terms of sequences using the term to term rule
2. Generate terms of sequences using the position to term rule
3. Generate terms of sequences including patterns and diagrams
4. Generate terms of more complex sequences

Starter activity

What do the following sequences represent? Can you continue them?
a) $\mathrm{M}, \mathrm{T}, \mathrm{W}, \mathrm{T}, \ldots$
b) J, F, M, A, M, J, J, ...
c) O, T, T, F, F, S, \ldots
d) Z, Y, X, W, V, \ldots

Generating Sequences

Activity 1

1. For each of the following describe the term to term rule and find the next three terms
a) $3,7,11, \ldots$
b) $11,18,25, \ldots$
c) $9,6,3, \ldots$
d) $5,11,17, \ldots$
e) $-4,-1,2, \ldots$
f) $29,25,21, \ldots$
g) $5,3,1, \ldots$
h) $0,-4,-8, \ldots$
i) $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \ldots$
2. Find the missing terms in the linear sequences
a) $2, \ldots . ., 8, \ldots . ., 14$
b) $4, \ldots . ., 10$
c) , 9
17,
d) 5 , 14,
e) 17 ,
$5, \ldots$.
f)....., 16 ,
..... , , 7 ,
\qquad / 15

Activity 2

1. Use the $\mathrm{n}^{\text {th }}$ term of the sequences to calculate the first 4 terms
a) $2 \mathrm{n}+3=$
b) $4 n+3=$
c) $4 \mathrm{n}-1=$

Generating Sequences

Activity 2

2. Use the $\mathrm{n}^{\text {th }}$ term of the sequences to calculate the $1^{\text {st }}, 5^{\text {th }}, 12^{\text {th }}$ and $50^{\text {th }}$ terms
a) $9 n-5=$
b) $-2 n-3=$
c) $-12 \mathrm{n}+36=$

Activity 3

For each sequence of patterns:
a) Draw the next two patterns in the sequence
b) Predict the number of matchsticks needed for pattern 6

Pattern

Pattern 1

Pattern 2

Pattern 3

Activity 4

1. Find the next 2 terms of the Fibonacci sequences
а) $3,6,9,15, \ldots$
b) $15,23,38,62, \ldots$

Generating Sequences

Activity 4

2. Find the next missing terms of the Fibonacci sequences
a), 13, 20, 33
b) $6, \ldots . . ., 4,2$
3. Find the next 2 terms of the geometric sequences
а) $1,4,16,64, \ldots$.
b) $6,12,24,48$,...
4. Find the next missing terms of the geometric sequences
a) 1 ,
$4,8, \ldots$.
b) $2,, 18,54$,

SCORE / 8

Plenary - What have I learnt today?

Finding the $\mathrm{n}^{\text {th }}$ term of sequences

Learning outcomes

1. Find the $\mathrm{n}^{\text {th }}$ term of a linear sequence
2. Find the $\mathrm{n}^{\text {th }}$ term in a sequence of diagrams
3. Apply the $\mathrm{n}^{\text {th }}$ term to identify terms in a sequence and decide if a given value is a term in the sequence
4. Find the $\mathrm{n}^{\text {th }}$ term of a geometric sequence

Starter activity

Find the term to term rule and the next three terms of the sequences
a) $6,15,24,33, \ldots$
b) $42,50,58,66, \ldots$
c) $93,86,79,72, \ldots$
d) $126,115,104,93, \ldots$
e) 7.1, 9.4, 11.7, 14, ...

Finding the $\mathrm{n}^{\text {th }}$ term of sequences

Activity 1

1. Find the $\mathrm{n}^{\text {th }}$ term for the sequences
a) $4,6,8,10, \ldots$
b) $2,8,14,20, \ldots$.
c) $2,5,8,11, \ldots$
d) $5,3,1,-1, \ldots$
e) $-5,-7,-9,-11, \ldots$
f) $6,23,40,57, \ldots$
2. Find the $\mathrm{n}^{\text {th }}$ term for the sequences and use this to find the $50^{\text {th }}$ term of the sequence
a) $7,13,19,25, \ldots$
b) $6,16,26,36, \ldots$
c) $10,8,6,4, \ldots$
d) $40,37,34,31, \ldots$

Finding the $\mathrm{n}^{\text {th }}$ term of sequences

Activity 2

For each pattern find the $\mathrm{n}^{\text {th }}$ term of the sequence of patterns and find the number of matches needed for the $100^{\text {th }}$ pattern

Pattern 1

Pattern 1

Pattern 2

Pattern 2

Pattern 3

Pattern 3

Activity 3

1. The $\mathrm{n}^{\text {th }}$ term of a sequence is $4 \mathrm{n}-1$
a) Which term has a value of 51 ?
b) Which is the first term to have a value greater than 100 ?
c) Is 74 a term in the sequence?
2. The $\mathrm{n}^{\text {th }}$ term of a sequence is $15-3 \mathrm{n}$
a) Which term has a value of -9 ?
b) Which is the first term to have a value less than -50 ?
c) Is -32 a term in the sequence?

Finding the $\mathrm{n}^{\text {th }}$ term of sequences

Activity 4

1. Find the $\mathrm{n}^{\text {th }}$ term of the geometric sequences
a) $3,15,75,325, \ldots$
b) $2,14,98,686, \ldots$
c) $11,22,44,88, \ldots$
d) $4,20,100,500, \ldots$
2. Find the $\mathrm{n}^{\text {th }}$ term of the geometric sequences, use this to find the $10^{\text {th }}$ term of the sequences
a) $4,6,9,13.5, \ldots$
b) $2,20,200,2000, \ldots$

Quadratic Sequences

Learning outcomes

1. Recognise and understand quadratic sequences
2. Use the $\mathrm{n}^{\text {th }}$ term of a quadratic sequence to generate terms
3. Find the $\mathrm{n}^{\text {th }}$ term of a quadratic sequence

Starter activity

1. For the equation $y=x^{2}+2$ calculate the value of y for the following values of x :
a) $x=5$
b) $x=7$
c) $x=-3$
2. For the equation $y=2 x^{2}+4 x-3$ calculate the value of y for the following values of x :
a) $x=3$
b) $x=8$
c) $x=-2$

GCSE MATHS

Quadratic Sequences

Activity 1

By calculating the first and possibly the second differences identify if the following are quadratic sequences
a) $2,5,10,17,26, \ldots$
b) $5,13,21,29,37, \ldots$
c) $3,6,12,24,48, \ldots$
d) $2,3,5,8,13, \ldots$

Activity 2

1. Generate the first 4 terms and the $10^{\text {th }}$ term of the sequences: (3 marks each)
a) $n^{2}+1$
b) $n^{2}+10$
2. Generate the first 4 terms and the $10^{\text {th }}$ term of the sequences:
a) $2 n^{2}+5$
b) $3 n^{2}-4$
3. Generate the first 4 terms and the $10^{\text {th }}$ term of the sequences:
a) $2 n^{2}+2 n+4$
b) $3 n^{2}-4 n+2$

Quadratic Sequences

Activity 3

Find the $\mathrm{n}^{\text {th }}$ term of the sequences
a) $3,6,11,18,27, \ldots$
b) $-8,-5,0,7,16, \ldots$
c) $7,16,31,52,79, \ldots$
d) $10,23,44,73,110, \ldots$
e) $6,24,52,90,138, \ldots$

Quadratic Sequences

Plenary - What have I learnt today?

Notes

$$
\begin{gathered}
y=08^{4 x} x \\
\sqrt{\frac{x}{y}}= \\
\left\{\begin{array}{l}
x \\
x
\end{array}=\right.
\end{gathered}
$$

$$
x+y=3
$$

$$
\sqrt{\frac{x}{y}}=c<a^{2}+b^{2}=x
$$ $k= \pm \frac{1}{3} a+k b^{F}=$

