Write your name here	lo	Other names
Pearson Edexcel Level 3 GCE Biology B Advanced Paper 1: Advanced Biochemistry, Microbiology and Genetics Sample Assessment Material for first teaching September 2015 Time: 1 hour 45 minutes Other names Candidate Number Candidate Number Candidate Number Candidate Number Paper Reference 9810/01		
Pearson Edexcel Level 3 GCE Biology B Advanced Paper 1: Advanced Biochemistry, Microbiology and Genetics Sample Assessment Material for first teaching September 2015 Paper Reference		
Advanced Paper 1: Advanced I		y,
	eaching September 20	
You may need a ruler, pencil a	nd a calculator.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Show your working in any calculation questions and include units in your answer where appropriate.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You may use a scientific calculator.
- In questions marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing how the points that you make are related or follow on from each other where appropriate.

Information

- The total mark for this paper is 90.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

S47568A
©2015 Pearson Education Ltd

Answer ALL questions.

Write your answers in the spaces provided.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 The photograph below shows an electron micrograph (EM) image of a chloroplast.

© Chloroplast, TEM Dr Jeremy Burgess/Science Photo Library

(a) Which of the following is correct for the part labelled **K**?

(1)

		Name	Reaction that takes place
X	A	granum	light-dependent
X	В	granum	light-independent
X	C	stroma	light-dependent
X	D	stroma	light-independent

(b) Describe the role of membranes inside the chloroplast.	(3)
/Tatalfor Overtic	
(Total for Questio	on 1 = 4 marks)

2		oigmentosa is a genetic ey olindness and sight defects	re disease that affects rod ce s.	lls. The disease results
	Induced p	oluripotent stem cells (iPS	cells) are being used by scie	ntists studying this disease.
	(a) Which	n of the following is correc	t for a pluripotent cell?	(1)
				(1)
		Is obtained from	Can differentiate into	
	⊠ A	early embryo	any cell type	
	⋈ B	early embryo	limited cell types	
	⊠ C	late embryo	any cell type	
	⊠ D	late embryo	limited cell types	
	(b) Descr	ibe how iPS cells can be p	roduced	
	(b) Desci	ise now ii s cens can se p	roduced.	(3)

(c) Describe how iPS cells could be used to cure retinitis pigmentosa.	(2)
(Total for Question 2	= 6 marks)

3			fication of viruses is based on their structure and the type of nucleic acid contain.	
	(a) Wł	nich	of the following is a reason why the influenza virus is classified as a retroviru	s? (1)
	X	A	it has a capsid	
	×	В	it has an envelope	
	×	C	it contains RNA	
	×	D	it contains DNA	
			of the following methods would be best for preventing the transmission of nza through a population?	(1)
	×	A	take paracetamol	(-)
	×	В	wear a face mask	
	×	C	use insect repellent	
	×	D	take antibiotics	

(c) Explain how the influenza virus has a pathogenic effect.	(4)
(Total for Question 3 =	= 6 marks)

4 The photograph below shows cells dividing by mitosis.

- © Steve Gschmeissner / Science Photo Library
- (a) The actual length of cell **J** is 23.5 μ m.
 - (i) Calculate the magnification of this photograph.

(3)

Answer

(ii) De	:scri	be what has happened in cell J .	(4)
	,		
(i) Wł	hich	sequence of letters represent the cells in order of their appearance in	
the	e ph	ases of mitosis?	(1)
X	A	E, F, G, H, I, J	
X	В	G, F, H, I, J, E	
\times	C	H, I, J, G, F, E	
X	D	J, I, H, G, F, E	
(ii) Giv	ve a	reason why there are differences in the appearance of cells E and G .	(-)
			(1)
		(Total for Question 4 = 9 m	arks)

5 The diagram below shows a stage of the process of respiration in the cytoplasm of muscle cells.

(a) What is the name of this stage?

(1)

- A Calvin cycle
- B glycogenolysis
- ☑ C glycolysis
- ☑ D Krebs cycle
- (b) Which other products are formed during this stage?

(1)

- A ADP and carbon dioxide
- ☑ B ADP and oxidised coenzyme
- ☑ C ATP and carbon dioxide
- **D** ATP and reduced coenzyme
- (c) What occurs in the first reaction of step 1?

(1)

- A condensation
- B hydrolysis
- **C** phosphorylation
- **D** photophosphorylation

) Describe what happens to t	he pyruvate when th	e muscle is supplied wit	h oxygen. (4)
		(Total for Question	5 = 7 marks)

6	(a)	Describe the action of bactericidal and bacteriostatic antibiotics.	(2)

(b) The resistance of one type of bacteria to a range of different antibiotics was investigated.

A lawn of bacteria was prepared by spreading a suspension of the bacteria over the surface of agar. Paper discs that had been soaked previously in different antibiotics were placed on top of the bacteria. The antibiotics were all the same concentration. The culture was incubated for 48 hours.

The diagram below shows the appearance of the culture after incubation.

Key:

C = chloramphenicol

E = erythromycin

G = gentamycin

P = penicillin

Explain why these results indicate that the bacteria must be Gram positive.	(3)

Explain how culturing could be used to ol	btain recombinant ba	cteria.	
Explain non calcaling could be used to of		(5	5)
	(Total for Q	uestion 6 = 10 marks	5)

7	The order of bases in a section of DNA codes for a sequence of amino acids in a protein.					
	(a) Draw a diagram to show the structure of an amino acid.					
		(2)				

<u>A</u>	A	Т	С	G	С	С	G	G	Δ	A T	А	Т	G	G	С	Α	Α
	leuc	ine		alani	ne		alanir	ne		tyrosin	e	thr	eonin	ie –	va	line	
(i)	Give	e the s	equ	uence	of ba	ses i	in the	mRNA	\ th	nat code	es for	the a	amino	acid	leuci		1)
(ii) Exp	lain ho	 DW 1	this ler	ngth	of D	NA wi	ll code	e fo	or this s	eque	nce c	of ami	no ac	ids.	(3	3)

I in this section of DNA.		(6)
	(Total for Question	7 = 12 marks)

8 A broth culture for growing bacteria was set up.

Dilution plating was used to determine the number of live bacteria in the culture over a period of 24 hours.

The graph below shows the number of live bacteria in the culture during this 24-hour period.

(a) Which is the correct order of the phases 1 to 4 shown on the graph?

(1)

- **A** lag, log, death, stationary
- B lag, log, stationary, death
- C log, lag, death, stationary
- D log, lag, stationary, death

				(6)
) for all and 2 of this		
Calculate the gro	wth rate constant (k		culture, using the	formula:
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	formula:
Calculate the gro			culture, using the	formula:
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$		(4)
Calculate the gro		$\frac{\log_{10}N_t - \log_{10}N_0}{0.301 \times t}$		(4)
Calculate the gro		$\log_{10}N_t - \log_{10}N_0$	culture, using the	

9 The Human Immunodeficiency Virus (HIV) causes an infection called Acquired Immune Deficiency Syndrome (AIDS).

The virus attacks T helper cells in the body and eventually leads to death, usually as a result of opportunistic infections.

The graph below shows changes in the T helper cell count and in the amount of viral RNA in a person during a period from initial HIV infection to death.

(a) Calculate the percentage change in viral RNA from week two to week six.

(2)

Answer

infection until death			(5)

(Tot	al for Question 9 = 12 marks)
Explain why a patient is usually given several different o	(2)
There are drugs that can be taken to reduce the reproduce the reproduced in the second different of the second different different different of the second different dif	
Thoughout during that are be talend to really a the	retion of LIN/
DNA into a double strand of DNA in the host cell.	(2)
(ii) Describe how other enzymes convert the compleme	entary single strand of
■ D TCCCCTCGC	
☑ B AGGGGTCGC	
■ A UCCCCAGCG	
Which of the following shows the correct sequence strand of complementary DNA made using reverse	

10 An investigation was carried out into the effect of carbon dioxide concentration on photosynthesis.

Cells of a unicellular alga were suspended in a solution containing 1.0% carbon dioxide. After 250 seconds the carbon dioxide was changed to 0.003% CO₂.

The cells were illuminated with a bright light and some were removed at regular time intervals. The concentrations of ribulose bisphosphate (RuBP) and glycerate 3-phosphate (GP) in the cells were measured.

The graph below shows the results of the investigation.

(a)	Explain why the cells were illuminated at a high light intensity during this
	investigation.

(3)

	Analyse the data to explain the effect of carbon dioxide concentrations on the production of RuBP.	
		(4)
(ii)	Analyse the data to explain the effect of carbon dioxide concentrations on the	
(11)	rate of production of GP.	
		(3)

(c) This investigation was carried out at 25°C.	
Explain the effect of lowering the temperature on the co the first 250 seconds of this investigation.	oncentration of RuBP for (3)
(Total	for Question 10 = 13 marks)
то	TAL FOR PAPER = 90 MARKS

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.