

1)

Equilibrium	ΔН	Increase temperature			Increase pressure			Remove some of B		
		moves left	no move	move right	moves left	no move	move right	moves left	no move	move right
$2 A(g) + B(g) \rightleftharpoons X(g) + Z(g)$	exothermic	~					~	~		
$A(g) + B(g) \rightleftharpoons X(g) + Z(g)$	endothermic			~		~		~		
$B(g) \rightleftharpoons X(g) + Z(g) + Y(g)$	exothermic	~			~			~		
$X(g) + Y(g) \rightleftharpoons 2 B(g)$	exothermic	~				~				~
$2 X(g) \rightleftharpoons 2 A(g) + B(g)$	endothermic			~	~					~

- 2) a) i) One in which no chemicals can get in or out
 - both reactions taking place simultaneously at the same rate all reactants and products are present concentrations remain constant
 - b) i) decreases
 - ii) equilibrium position shifts left, in endothermic direction to lower the temperature
 - c) i) increases
 - ii) equilibrium position shifts right, to side with less gas molecules to lower the pressure
 - d) i) increases
 - ii) equilibrium position shifts right, to remove the added oxygen
- 3) NaOH reacts with HCl and removes it; equilibrium shifts right to replace lost HCl; therefore more BiOCl white precipitate formed