

LE CHATELIER'S PRINCIPLE 1

1)

Equilibrium	Energy change (forward reaction)	Increase temperature			Increase pressure		
		moves left	no move	move right	moves left	no move	move right
$A(g) + 2 B(g) \rightleftharpoons X(g) + Z(g)$	exothermic	✓					✓
$P(g) + Q(g) \rightleftharpoons 2 X(g)$	endothermic			✓		>	
$A_2(g) \rightleftharpoons X(g) + Z(g)$	exothermic	✓			✓		
2 P(g) ⇌ 2 C(g) + D(g)	endothermic			✓	✓		

- 2) a) i) increases
 - ii) equilibrium position shifts right, in endothermic direction to lower the temperature
 - b) i) decreases
 - ii) equilibrium position shifts left, to side with less gas molecules to lower the pressure
- 3) a) i) decreases
 - ii) equilibrium position shifts left, in endothermic direction to lower the temperature
 - b) i) no effec
 - ii) same number of gas molecules on both sides of equation