K_{c} CALCULATIONS 1

Simplest questions - equilibrium quantities given

1) Calculate K_{c} for the following equilibrium given the results of an analysis of the equilibrium mixture which show that the concentration of $\mathrm{SO}_{2}=0.230, \mathrm{O}_{2}=1.370$ and $\mathrm{SO}_{3}=0.920 \mathrm{~mol} \mathrm{dm}^{-3}$

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

2) Calculate K_{c} for the equilibrium below if $[\mathrm{A}]=0.0200 \mathrm{~mol} \mathrm{dm}^{-3},\left[\mathrm{~B}_{2}\right]=0.100$ $\mathrm{mol} \mathrm{dm}{ }^{-3}$ and $[A B]=0.400 \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
2 \mathrm{~A}+\mathrm{B}_{2} \rightleftharpoons 2 \mathrm{AB}
$$

3) Some PCl_{5} was heated in a sealed container resulting in the following equilibrium. Analysis of the equilibrium mixture showed that it contained 0.00420 moles of PCl_{5} 0.0400 moles of PCl_{3} and 0.0400 moles of Cl_{2}. The total volume was $2.00 \mathrm{dm}^{3}$ Calculate the concentration of each species at equilibrium and then K_{c}.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{PCl}_{3}(\mathrm{~g})
$$

Next step up - you need to find equilibrium quantities first

4) $\quad 2.00$ moles of PCl_{5} vapour are heated to temperature T in a vessel of volume $2.0 \times 10^{1} \mathrm{dm}^{3}$. The equilibrium mixture contains 1.20 moles of chlorine. Calculate K_{c} for the equilibrium at temperature T.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

5) When 5.0 moles of A is mixed with 5.0 moles of B in a container of volume $12 \mathrm{dm}^{3}$, an equilibrium is established which contains 3.0 moles of C. Find K_{c} at this temperature.

$$
A+2 B \rightleftharpoons 2 C
$$

6) $\quad 200.0 \mathrm{~g}$ of ethyl ethanoate and 7.00 g of water were refluxed together. At equilibrium, the mixture contained 0.250 mol of ethanoic acid. Calculate K_{c} for the hydrolysis of ethyl ethanoate.

$$
\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(\mathrm{I})
$$

Working back from K_{c} to find equilibrium quantities

7) In the following equilibrium, $\mathrm{K}_{\mathrm{c}}=54.1$ at a particular temperature. The equilibrium mixture was found to contain H_{2} at a concentration of $4.80 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$, and HI at a concentration of $3.53 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \quad \Delta \mathrm{H}>0
$$

a) What is the equilibrium concentration of I_{2} ?
b) What effect would doubling the concentration of hydrogen have on the equilibrium position and K_{c} ?
c) What effect would increasing the temperature have on the equilibrium position and K_{c} ?
8) $\quad \mathrm{K}_{\mathrm{c}}$ for the equilibrium below is 0.00360 at temperature T. If 1.00 mole of N_{2} and 1.00 mole of O_{2} are allowed to reach equilibrium, what mass of NO will be present in the mixture (you do not need to solve a quadratic equation to answer this)?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})
$$

Something harder

9) The following equilibrium is established at temperature T when 1.00 mol of HI is contained. It is found that 22% of the HI has broken down. Calculate K_{c}.

$$
2 \mathrm{HI}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

10) When 1.00 moles of steam and 1.00 moles of carbon monoxide were allowed to reach equilibrium, 33.3% of the equilibrium volume is hydrogen. Calculate K_{c} at this temperature (you will need to think very carefully about equilibrium quantities).

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

11) K_{c} for the equilibrium below is 10.0 at temperature T. If 1.0 mole of the ester is mixed with 5.0 moles of water and the mixture allowed to reach equilibrium, how many moles of each species will be present at equilibrium (you will need to solve a quadratic equation to answer this)?

$$
\mathrm{HCOOCH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{HCOOH}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

