Please check the examination details below before entering your candidate information					
Candidate surname			Other names		
Pearson	Centre	Number	Candidate Number		
Edexcel GCE					
Monday 20 May 2019					
Morning (Time: 1 hour 30 minutes) Paper Reference 8CH0/01					
Chemistry Advanced Subsidiary Paper 1: Core Inorganic and Physical Chemistry					
Candidates must have: Scien Data	ntific calc Booklet	ulator	Total Marks		

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an **asterisk** (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

1 How many **ions** are present in 306 g of aluminium oxide, Al₂O₃?

[Avogadro constant = $6.02 \times 10^{23} \, \text{mol}^{-1}$ Molar mass of $\text{Al}_2\text{O}_3 = 102 \, \text{g mol}^{-1}$]

- \triangle **A** 6.02 × 10²³
- \blacksquare **B** 1.81 × 10²⁴
- \square **C** 3.01 × 10²⁴
- \square **D** 9.03 × 10²⁴

(Total for Question 1 = 1 mark)

- **2** What is the electronic configuration of the sulfide ion, S^{2-} ?
 - \triangle **A** 1s²2s²2p⁶3s²3p²
 - \blacksquare **B** $1s^22s^22p^63p^4$
 - \square **C** $1s^22s^22p^63s^23p^4$
 - \square 1s²2s²2p⁶3s²3p⁶

(Total for Question 2 = 1 mark)

_		
3	This question is about isotopes.	
	(a) State, in terms of subatomic particles, what is meant by the term isotopes .	(2)
	 (b) The element gallium has a relative atomic mass of 69.735 and only contains two isotopes. A sample of gallium contained the isotope ⁶⁹Ga, with a relative abundance of 63.2 	5 %.
	Calculate the mass number of the other isotope. You must show all your working.	
	, c	(2)

(Total for Question 3 = 4 marks)

- 4 This question is about trends within Group 2 of the Periodic Table.
 - (a) Which of the following describes the trends in thermal stability of the Group 2 carbonates and nitrates going down the group?

	Thermal stability				
	Carbonates	Nitrates			
A	increases	increases			
В	increases	decreases			
C	decreases	increases			
D	decreases	decreases			
		Carbonates A increases B increases C decreases			

(b) Describe, with the aid of a labelled diagram, how you would compare the thermal stability of two different Group 2 nitrates using simple laboratory equipment.

Your answer **must** include **one** safety precaution (excluding the use of gloves, laboratory coat and eye protection).

 \bowtie A

 \times B

 \times C

■ D

(c) Which of the following describes the trends in the solubility in water of the Group 2 hydroxides and sulfates going down the group?

(1)

Solubility in water		
Hydroxides	Sulfates	
increases	increases	
increases	decreases	
decreases	increases	
decreases	decreases	

(Total for Question 4 = 6 marks)

- **5** This question is about iron(II) salts.
 - (a) What is the percentage by mass of iron in anhydrous iron(II) sulfate, FeSO $_4$, to 3 significant figures?

- **■ B** 35.1%
- **C** 36.7%
- **D** 53.8%
- (b) Describe a chemical test, and the expected result, to show that sulfate ions are present in a solution of iron(II) sulfate in water.

(2)

(c) Mohr's salt is another compound containing iron(II) ions.

It has the formula $(NH_4)_2Fe(SO_4)_2 \cdot 6H_2O$.

What is the molar mass, in g mol⁻¹, of Mohr's salt?

(1)

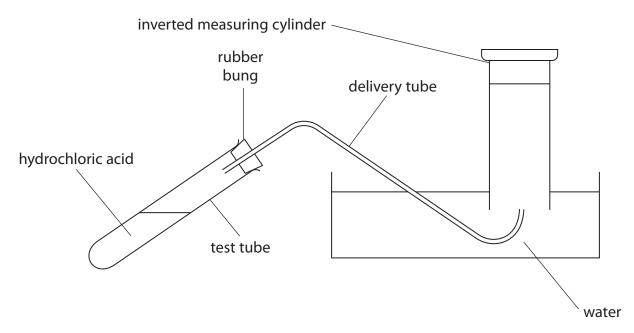
- **■ B** 312.0
- **C** 302.0

(Total for Question 5 = 4 marks)

	A colid white water coluble common and was thought to be accommon to the contract of	
6	A solid, white, water-soluble compound was thought to be magnesium bromide. A student carried out tests to confirm the identity of both ions present.	
	(a) A flame test was carried out to test for the cation.	
	(i) Describe how a flame test is carried out.	(2)
		(3)
	(ii) Explain the origin of flame test colours.	(4)
		(4)

(iii) Giv	e a reason why the magnesium ion does not produce a flame colour.	(1)
	e a reason why the lack of a flame colour is not a positive test for the gnesium ion.	(1)
	re the formula of a reagent that would produce a cream-coloured ecipitate when added to an aqueous solution of magnesium bromide.	(1)
cre	e identity of the anion may be confirmed by testing the solubility of the am-coloured precipitate in ammonia solution. Which pair of responses	

(11)	The identity of the amon may be committed by testing the solubility of the
	cream-coloured precipitate in ammonia solution. Which pair of response
	helps to confirm the identity of the anion?


	Solubility in dilute Solubility in concentra ammonia solution ammonia solution		
⊠ A	insoluble	insoluble	
⊠ B	insoluble	soluble	
⊠ C	soluble	insoluble	
⊠ D	soluble	soluble	

(Total for Question 6 = 11 marks)

- 7 This question is about the reaction of magnesium with dilute hydrochloric acid.
 - (a) Write an equation for the reaction of magnesium with hydrochloric acid. Include state symbols.

(2)

(b) The apparatus shown in the diagram can be used to collect the gas produced during the reaction of magnesium with dilute hydrochloric acid.

The following procedure was used.

- Step **1** The apparatus was set up as shown in the diagram. The test tube contained 10.0 cm³ of 0.20 mol dm⁻³ hydrochloric acid.
- Step 2 A piece of magnesium ribbon was weighed. It had a mass of 0.12 g.
- Step 3 The delivery tube and bung were removed from the test tube, the magnesium ribbon was added and the delivery tube and bung quickly replaced.
- Step 4 When the reaction was complete, the final volume of gas was recorded.
 - (i) A measuring cylinder was used to measure the 10.0 cm³ of dilute hydrochloric acid in Step **1**. The uncertainty for a volume measurement is ± 0.5 cm³. Calculate the percentage uncertainty in the volume of hydrochloric acid.

(1)

(ii) Determine which reactant is in excess by calculating the number of moles of magnesium and of hydrochloric acid used in the experiment.

(3)

(iii) Calculate the maximum number of moles of gas that could be produced, using your answers to (a) and (b)(ii).

(1)

(iv) Under the conditions of the experiment, the temperature was 23°C and the pressure 98 000 Pa.

Calculate the maximum volume of gas, **in cm**³, that could be produced using your answer in (b)(iii).

Give your answer to an appropriate number of significant figures.

[The ideal gas equation is pV = nRT. Gas constant $(R) = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$]

(1)	Deduce two possible reasons why the volume of gas collected in the experiment was smaller than that calculated in (b)(iv).	(0)
		(2)
(ii)	Describe two changes to the procedure that would enable the volume of gas collected to be closer to that calculated in (b)(iv).	
	concerca to be closer to that calculated in (b)(iv).	(2)

8 The table shows some information about a selection of elements and compounds.

	Graphene	Graphite	Diamond	Magnesium oxide	Potassium bromide	Iron
Melting temperature /K	>4000	3950	3820	3125	1007	1808
Density /g cm ⁻³	not measured	2.2 to 2.8	3.51	3.58	2.75	7.86
Compressive strength / GPa	not measured	2.3 and 15.3	443	152	15	170

(a)	Explain the difference in the melting temperatures of magnesium oxide and potassium bromide.	(3)
 (b)	Explain why the electrical conductivity of solid potassium bromide is poor but an aqueous solution of potassium bromide is a good electrical conductor.	(2)

*(c) Graphene, graphite and diamond are all forms of solid carbon. Explain, in terms of structure and bonding, why graphene and graphite are good electrical conductors but diamond is a poor electrical conductor.	
	You may include labelled diagrams in your answer.	
		(6)
•••••		
•••••		

Deduce two possible reasons why the density of iron $(7.86 \mathrm{gcm^{-3}})$ is much great than the density of graphite $(2.2 \mathrm{to} 2.8 \mathrm{gcm^{-3}})$.	
	(2)
) The compressive strength is a measure of the energy required to break some of the bonds within a substance.	
Deduce possible reasons why there are two widely different values for the comp strength of graphite.	ressive
Both the values (2.3 and 15.3 GPa) are valid experimental results.	(2)
	(2)
(Total for Question 8 = 15 m	narks)

- **9** This question is about chlorine and its compounds.
 - (a) Potassium chlorate(V) can be produced by passing chlorine gas into hot, concentrated potassium hydroxide solution.

$$3\text{Cl}_2 \ + \ 6\text{KOH} \ \rightarrow \ 5\text{KCl} \ + \ \text{KClO}_3 \ + \ 3\text{H}_2\text{O}$$

- (i) This reaction is an example of
- A oxidation only
- B reduction only
- D decomposition

(ii) A dot-and-cross diagram for the chlorate(V) ion (ClO₃⁻) is shown.

$$\begin{bmatrix} \overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\\ \overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\\ \overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ}\overset{\times}{\circ} \end{bmatrix}^{-}$$

Key

- = chlorine electrons
- = an added electron
- \times = oxygen electrons

Predict the shape and bond angle (O—Cl—O) of the chlorate(V) ion. Justify your answer.

(b) (i)	The following reaction occurs when potassium chlorate(V) is heated at a
	suitable temperature.
	Complete the equation by balancing it.
	State symbols are not required.

$$\mathsf{KClO}_3 \to \mathsf{KClO}_4 \tag{1}$$

(ii) The table shows some properties of potassium chloride and potassium chlorate(VII).

	Potassium chloride KCl	Potassium chlorate(VII) KClO ₄
Solubility in water (mol/100 g)	4.81×10^{-1}	1.29×10^{-2}
Solubility in ethanol (mol/100 g)	2.9 × 10 ⁻⁴	8.7 × 10 ⁻⁶

Devise a brief method to show how the compounds produced in the decomposition of potassium chlorate(V) could most effectively be separated. Use information from the table.

(3)

(c) Chlorine gas, Cl₂, can be dissolved in swimming pool water to disinfect it.

An Olympic-sized swimming pool contains about 2500 m³ of water. The chlorine content is 2 ppm (parts per million) by mass. Calculate the number of moles of chlorine, Cl₂, in the swimming pool.

[One ppm is equivalent to 1 g of chlorine dissolved in 1×10^6 g of water. Density of water = 1 g cm⁻³]

(3)

(d) When chlorine gas is dissolved in water, it reacts according to the equation

$$Cl_2 + H_2O \rightarrow HCl + HClO$$

The chloric(I) acid (HClO) produced is much more effective as a disinfectant than dissolved chlorine.

Chloric(I) acid is a weak acid and has little effect on the pH of the water.

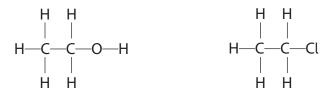
Swimming pools usually have a chlorine content of 1 - 3 ppm.

Use the equation to explain one **disadvantage** of a chlorine content that is much lower than 1 ppm and one **disadvantage** of a chlorine content that is much higher than 3 ppm.

(e) In many swimming pools, sodium chlorate(I) has replaced chlorine gas as a disinfectant.

Sodium chlorate(I) is an ionic compound. It is very soluble in water.

$$NaClO(aq) \rightarrow Na^{+}(aq) + ClO^{-}(aq)$$


(i) Describe, using diagrams to illustrate your answer, the interactions between each of the ions and the solvent when sodium chlorate(I) dissolves in water.

(2)

(2)

(ii) The displayed formulae of ethanol and chloroethane are shown.

ethanol chloroethane

Ethanol is very soluble in water whereas chloroethane is almost insoluble in water.

Explain this observation by comparing the types of intermolecular forces formed by each of these molecules with water.

 	 •••••	 	 							

(f) Calcium chlorate(I), Ca(ClO)₂, can be used to disinfect drinking water.

The concentration of chlorate(I) ions required to disinfect water is about $5.6\times10^{-6}\,\text{mol\,dm}^{-3}$.

Calculate the mass of calcium chlorate(I), in g, that should be added to $1000\,\mathrm{dm^3}$ of water to produce a chlorate(I) ion concentration of $5.6\times10^{-6}\,\mathrm{mol\,dm^{-3}}$.

(3)

(Total for Question 9 = 23 marks)

TOTAL FOR PAPER = 80 MARKS

The Periodic Table of Elements

0 (8)	4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8	Kr krypton 36	131.3 Xe	54	[222] P.	radon 86	ted	_
7	(17)	19.0 F fluorine	35.5 Cl chlorine 17	79.9	Br bromine 35	126.9 I	53	[210] A +	At astatine 85	oeen repor	175
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0	Se selenium 34	127.6 Te	52	[209]	polonium 84	116 have b Iticated	173
2	(15)	14.0 N nitrogen 7	31.0 P	74.9	AS arsenic 33	121.8 Sb	51	209.0 Ri	bismuth 83	tomic numbers 112-116 hav but not fully authenticated	140
4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6	Ge germanium 32	118.7 Sn		207.2 Dh	lead 82	atomic nur but not fu	147
m	(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7	Ga gallium 31	I14.8 In	49	204.4	thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	165
			(12)	65.4	Zn zinc 30	112.4 Cd	48	200.6 Hg	mercury 80	Elem	163
			(11)	63.5	Cu copper 29	107.9 Ag	47	197.0	gold 79	[272] Rg roentgenium	159
			(10)	58.7	Ni nickel 28	Pd Pd	46	195.1 D +	platinum 78	Ds damstadtium 1	157
			(6)	58.9	Co cobalt 27	102.9 Rh	45	192.2 Ir	iridium 77	[268] Mt meitherium 109	152
	1.0 H hydrogen		(8)	55.8	Fe iron 26	101.1 Ru	44	190.2	osmium 76	[277] Hs hassium 108	150
			(2)	54.9	Mn manganese 25	[98] 101.1 Tc Ru	43	186.2 D o	rhenium 75	[264] Bh bohrium 107	[147]
		mass 30l umber	(9)	52.0		95.9 Mo	42	183.8 W	tungsten 74	[266] Sg seaborgium 106	144
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9	V nadium 23	92.9 Nb	41	180.9 T.s	tantalum 73	[262] Db dubnium 105	141
		relati ato i atomic	(4)	47.9	Ti titanium 22	91.2 Zr	40	178.5 H£		[261] Rf utherfordium 104	140
			(3)	45.0	_	88.9 Y	39	138.9	10	[227] Ac* actinium 89	
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1	Ca calcium 20	87.6 Sr	38	137.3 Ra	barium l	[226] Ra radium 88	
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1	K potassium 19	85.5 Rb		132.9 Cs		[223]	

* Lanthanide series

* Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
e e	P	PX	Pm	Sm	Eu	В	P	ρ	운	Б	Ę	χ	ב
cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
58	59	9	61	62	63	64	65	99	67	68	\neg	70	71
232	[231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
드	Pa	_	å	Pu	Am	Cm	BK		Es	Fm	ΡW	8 N	۲
:horium	protactinium	uranium	neptunium	plutonium	americium	aurium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
06	90 91	92	93	94	92	96	26	86	66		101		103